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The diffusion flow to a moving particle at small Reynolds numbers 
(Re << 1) is described by a criterial equation of the form 

Nu ~ Pe m , (I) 

where m = 1/2 for a dissolving bubble and m = 1/8 for a dissolving 
solid particle [1]. 

In extraction the ratio of the dynamic viscosity of the liquid in- 
side the droplet ~1 tO the viscosity of the external liquid ~ varies 
within the limits 0 < p = p i / l a  2 < % We will show that in expres- 
sion (1) for the diffusion flow to a moving droplet the value of m also 
depends on y. At small /~ the  exponent of the Pe number tends to 
1/2, while at large ~ it tends to 1/8.* 

The stationary distribution of concentration C in a plane diffusion 
layer is described by the equation 

dC OC ' OC O~C 
= Vx ~ D - -  (2) 

dt  - - ~ x x -  @ v,? Oy Oy ~ ' 

where t is the diffusion time and y the distance along the normal to 
the surface of the body (at the surface y = 0). The coordinate x is 
reckoned from the surface of  the body in the direction of motion of the 
liquid. As Prandtl [3] has shown, the surface of a body may be con- 
sidered plane if the thickness of the boundary layer is small as com- 
pared with the radius of curvature of the surface. The solution of Eq. 
(2) must satisfy the conditions 

x = 0  
( t = 0 )  y > 0 ,  C = C o ,  

L > x > O  y = 0 ,  C = 0 .  

(: > t > 0) OC 
i y ~ e c ,  - -  - ,  O. ( 3 )  

0y 

We introduce the following scales: time r, distance along the normal 
to the surface X, and concentration Co, and reduce Eq. (2) and condi- 
tions (3) to the dimensionless form 

d n  D ~  __Oan (4) 

~=0, ~_>0, n = l ;  

= 0, n =  0 (5) 

1 : > ~ > 0  On 
~_---,co, - -  ~ O. 

O~ 

Here, n = C/C 0, ~ = y/k, and r = t / r  are the dimensionless concentra- 

tion, coordinate, and time. 
Integration of Eq. (4) with conditions (5) gives 

( 0n , )3 X dn d r =  s 

o 

For the mean value of ( 0@ ) : =o  with respect to gwe have 

,~=0 D 

(6) 

*Similar arguments were put forward in [2]. 

where c~ is some constant coefficient. We define the scale as the 
mean thickness of the diffusion layer for all t: 

6 ~- CoDff ,  

where ]--- - - D  C. 0)~ -~  ( 7 ~  T -  }. (, is the mean value of the diffusion 

flux. Then - - T -  ~ = - 1 and expression (6) takes the form 
c). /( 0 

a -  ?~E, 
where 6 E = (2Dr) 1/a is the mean displacement of the particles in time 
r determined from the Einstein diffusion law; B = 1/~2c~)l/2is a pro- 
portionality factor, Since the dimensionless variables n, ~, and g 
vary in the range from 0 to unity, an estimate of the proportionality 
factor gives 

l 
) = - -  - - 1 .  

 /i(i 1 ' d n  
2 - ~ g  d ~  d~_ 

0 / 

Thus, the problem of convective diffusion with a variable dif- 
fusion layer thickness 6(x) is reduced to the equivalent problem with 
a constant thickness 6. In this case the estimate of the characteristic 
time r acquires special significance. 

If the streamlines are parallel to the surface of the body and the 
fluid velocity U is not a function of the coordinates, the particles of 
diffusing substance carried by the flow into the layer 6 are uniformly 
deposited over the entire surface of the body and on average the 
particle diffusion time 

L L 

0 0 

Let the velocity U be an arbitrary function of the distance to the 
surface. As a result of the random motion a particle of diffusing sub- 
stance will be at different distances from the surface at different mo- 
ments of time and will be displaced by the flow along the body at 
different velocities. However, since the time during which the par- 
ticle remains in a layer of thickness ky does not depend on the value 
of the y coordinate, the average rate of displacement of the particle 
along the surface is equal to the average flow velocity with respect 
to y. In this case the particles of diffusing substance reach the surface 
on average after a time 

L 

: - -  L t~-- dx.  

O* ) dy  

0 

If the velocity is a function of the coordinates x and y, the time in 
which particles of diffusing substance reach the surface of the body 
from the layer 6 is determined only by the value of the tangential 

velocity component and can be estimated as 

L x 

= - -  L 1 ~ dx. 

0 ~ 1'. v .  (z, !fi d!/ 
0 
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The flow over a sphere of radius a is affected by the entire front 
part of the sphere. Therefore in calculating the t ime taken by the 
fluid to move along an arbitrary streamline in the layer 6 it is ne-  
cessary to integrate within the limits 0, ~r-0 (6 is the angle between 
the radius vector and the polar axis, which coincides with the direc- 
tion of motion of the unperturbed flow; the coordinate origin is lo- 
cated at the center of the sphere). 

The diffusion t ime averaged over the entire surface of the sphere 

2 ~ - 0  

x :  2 ; 2~asinO S o -~1 %(# ,d / )dy  d(aO). (8) 

o 

We will est imate the diffusion flow to a spherical droplet moving 
at Re << 1. In accordance with the Hadamard-Rybchinskii solution, 
the tangential  velocity 

v o = u q~sin 0, (9) 

where u is the velocity of the droplet; 

1 1 - ~ 3 ~  y 

2(1 + ~) 2 0 + ~ )  a 

From Eqs. (7)-(9) we obtain an equation for estimating the thick- 
ness of the diffusion layer: 

~-  ~-0  

6 2 = 4 ~  Da I ~ P '  ! s i n O  ~ d ~ 2 a  
u 1 _~ (1 ,_[_ 3~t) ~__._~ ~ dO .  (10) 

0 

integrating and keeping in mind that Nu = a/5, Pe = ua/D. we re- 
duce Eq. (10) to the form 

Nu s 
P c =  (16 In 2) ~ (1+ ~) 1 + 3~-4- 2Nu (11) 

For a bubble (p << t ,  Pe >> 1) expression (11) takes the form 

1 
0~42 lintY" Su = - - - ~  �9 (12) 

If ~ ~ ~ (solid particle) and Pe >> 1, Eq. (11) becomes 

1 
0.65 

Su---- ~ Pe ~ .  (13) 

When the viscosities are comparable (~ ~ 1), we have 
I 1 

The numerical  coefficients in (12)-(14) coincide with the exact  
values [1] if 8 is set equal to 0.91 in (12) and (14) and 1.02 in (13). 
This confirms the validity of the above est imate of B, and indicates 
that this coefficient depends only very slightly on viscosity. 

It may be assumed that the function Nu(g), determined from 
Eq. (11), does not have singularities in the interval of variation of 
viscosity 0 - V -< ~. Therefore the quantity t~ in Eq. (11) may be 
taken equal to its mean value of 0.97. When the above value of the 
coefficient ~ is employed, the diffusion flux is calculated correct to 
approximately e6qo. 

Since we have assumed the statinnarity of the concentration field, 
the method proposed is applicable for t imes t much greater than the 
t ime ~" during which as a result of diffusion to the surface of the body 
the particles are displaced through a distance equal to the thickness 
of the diffusion layer 6, i . e . ,  

6 '  
t>>~-- 

2~ 2 O 

In the stationary regime the diffnsinn t ime is equal to the convec- 
tion t ime.  The latter is equal in order of magnitude to 00u, which 
makes it possible to put the stationarity condition in the form t >> 
>> 00u, a form convenient for practical calculations. 

NOTATION 

a is the radius of droplet (sphere); C is the concentration, C o is the 
same remote from the surface; D is the diffusion coefficient; j is the dif- 
fusion flux; n = C / C  0 is the dimensional concentration; t i s t im e ;  U 
and u are the velocity of liquid and droplet, respectively; roy x is the tan-  
gential component of velocity; Vy is the normal component of velocity; 
x is the coordinate along surface of body; y is the coordinate along 
normal to surface; Nu = o05 is the Nusselt number. Pe = ua/D is the 

^ " / ' ~ -  "1/2 "S c o e f f l  Peclet number; Re is the Reynolds number; t~ = x / t~a )  1 a "- 
cient; 6 is the thickness of diffusion layer; g - y /k  is a dimensionless 
coordinate; @. 0 a repolar  angles; k is the scale in the y direction; 
Pl, Pz is t h e d y n a m i c  viscosity of liquid inside and outside droplet, 

= Pt/~2; g = t / r  is dimensionless t ime; ~" is the t ime scale. 
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It is now becoming clear that the use of ceramic materials in the 
channels of MHD generators operating on combustion products at 

2800-3000 ~ K must be extremely l imited.  The experimentally ob- 

served damage and the interaction of the plasma with the duct walls 
exclude the possibility of using uncooled systems over extended periods, 
but it is to be expected that water-cooled metal  walls will be suffi- 


